
	

Self-Led Lab Exercises for Raspberry Pi Cluster
	

	
	
	
	

• Build a compute cluster using Raspberry Pis
• Set up an environment similar to a NASA supercomputer

• Run a hydrodynamics visual demo	 	

Introduction	

The	goal	of	this	document	is	to	show	you	how	to	build	a	compute	cluster	using	Raspberry	Pis.	In	addition,	
we’ll	help	you	set	up	an	environment	that	will	be	very	similar	to	what	is	used	on	one	of	the	fastest	
supercomputers	in	the	world:	The	Pleiades	supercomputer	at	NASA’s	Advanced	Supercomputing	(NAS)	
Division.	When	you’re	finished	you’ll	have	a	cluster	that	runs	the	same	scheduling	software	as	Pleiades	
(Portable	Batch	Scheduler	or	PBS),	and	you’ll	be	able	to	run	a	cool	hydrodynamics	visual	demo	that	you	
can	show	off	to	your	friends!	

This	guide	does	assume	you	have	an	understanding	of	networking,	Linux	environments,	and	
technical	troubleshooting.	If	you	run	into	trouble,	you’ll	need	to	use	your	favorite	search	engine	to	
find	answers.	

Let’s	start	with	what	you’ll	need:	

• 8	Raspberry	Pis	(you	can	get	by	with	less...but	try	for	at	least	4)	

• 8	MicroSD	cards	(we	went	with	32GB	cards)	

• SD	card	reader	-	most	modern	laptops	and	desktop	PCs	have	SD	card	slots,	but	you	may	
need	to	purchase	an	SD	card	reader	(they	usually	plug	into	a	USB	port)	in	order	to	copy	the	
necessary	software	to	the	SD	card	

• USB	Multiport	Charging	hub	(we	used	the	Anker	Powerport-10)	

• 8	1-ft	USB	to	micro-USB	charging	cables	to	plug	your	Raspberry	Pis	into	the	USB	charging	
hub	

• Ethernet	Switch	–	you	will	need	enough	ports	for	all	of	the	Raspberry	Pis	and	an	additional	
port	to	connect	to	your	internet	switch	

• 8	short	(1-ft	or	2-ft)	ethernet	cables	

• 1	additional	ethernet	cable	(however	long	you	need	it	to	be)	to	connect	your	Pi	ethernet	
switch	to	your	internet	switch	

• 1	HDMI	display	(if	you	want	to	show	off	the	visual	demos)	

• 1	HDMI	cable	

• Case	(optional)	-	we	used	an	8-layer	GeauxRobot	Dog	Bone	Stack	clear	case	

	

Environment	

Pleiades	has	thousands	of	machines	(or	nodes)	whose	sole	purpose	is	to	perform	computations.	A	smaller	
number	of	machines	are	set	aside	for	storage	and	scheduling.	In	our	cluster,	we’ll	use	one	Pi	as	the	front	
end	for	the	entire	cluster.	The	front-end	will	run	the	scheduler	that	kicks	off	your	programs.	We’ll	also	set	
aside	another	Pi	just	for	storage.	This	is	where	your	programs	will	be	stored	along	with	any	data	
generated	by	your	programs.	That	leaves	six	Pis	dedicated	for	computation.	So	now	that	we	have	a	general	
idea	of	what	we	want	to	build,	let’s	build	it!	

	

	

Construction	

If	you’ve	decided	to	purchase	a	case	(or	cases)	for	your	Raspberry	Pi	nodes,	assemble	this	now.	
Afterwards	power	up	your	Pi	switch	and	connect	each	Pi	to	the	switch.	Then	run	another	cable	from	your	
Pi	switch	over	to	your	internet	switch	(it’s	very	difficult	to	install	software	on	your	Pis	without	internet	
connectivity).	We’ll	hold	off	on	powering	up	the	Pis	until	we’ve	copied	the	necessary	software	to	the	
MicroSD	cards.	

	

Flashing	the	MicroSD	cards	

First	you’ll	need	to	download	the	operating	system	that	will	run	on	each	of	the	nodes	in	your	cluster.	This	
can	be	downloaded	from	https://www.raspberrypi.org/downloads/raspbian.	Download	the	ZIP	file	for	
Raspbian	Stretch	Lite	to	your	local	machine.	This	is	a	non-graphical	version	of	the	operating	system.	
Installing	a	desktop	windowing	environment	on	each	Pi	is	not	necessary	since	you’ll	probably	be	
accessing	the	cluster	using	a	regular	PC	or	Mac.	

Next	you’ll	need	to	download	and	install	a	program	called	Etcher	to	your	local	machine	from	
https://www.balena.io/etcher/.	This	will	allow	you	to	copy	the	ZIP	file	you	downloaded	earlier	to	the	SD	
cards.	Once	you	have	Etcher	downloaded...	

1. Attach	one	of	the	SD	cards	to	your	local	machine.	

2. Open	Etcher	and	select	the	ZIP	file	downloaded	earlier	which	contains	the	Raspbian	
operating	system.	

3. Select	the	SD	card	that	you’d	like	to	copy	Raspbian	to.	

4. Review	your	selections	and	then	click	“Flash”	to	copy	the	operating	system	to	the	SD	card.	

5. Repeat	the	above	instructions	for	all	of	SD	cards.	

	

Enabling	SSH	on	the	boot	volume	

When	accessing	any	compute	cluster,	SSH	is	the	method	of	choice.	Fortunately,	SSH	comes	preinstalled	
with	the	Raspbian	operating	system,	but	it	needs	to	be	enabled	first.	The	easiest	way	to	do	this	is	to	create	
a	blank	text	file	called	“ssh”	on	the	boot	volume	of	each	SD	card:	

1. You	can	access	the	boot	volume	by	simply	plugging	the	SD	card	into	your	local	machine.	It	will	
show	up	on	your	computer	as	“/boot”	if	you’re	using	a	Mac	or	Linux	machine.	It	will	show	up	as	a	
drive	letter	on	a	Windows	machine.	

2. Once	the	SD	card	is	mounted,	create	a	blank	file	called	“ssh”	in	the	root	directory	of	the	“boot”	
volume	on	the	SD	card.	

3. Repeat	this	process	for	all	of	the	SD	cards.	

	

Finding	IP	Addresses	

You	will	need	to	get	the	IP	addresses	assigned	to	your	Pis.	Without	knowing	the	IP	addresses,	it	will	be	
very	difficult	to	configure.	There	are	a	couple	of	different	ways	to	find	the	IPs.	One	way	is	to	login	to	your	
internet	router	and	view	the	list	of	IPs	assigned	by	the	DHCP	service.	This	varies	from	router	to	router,	but	

it	should	be	fairly	easy	to	find.	Another	method	is	to	download	and	install	a	utility	called	nmap.	nmap	is	a	
free	utility	for	profiling	networks.	nmap	can	be	used	to	scan	your	network	and	show	you	which	IPs	are	in	
use.	For	example,	assuming	your	network	is	192.168.0.0,	you	would	use	the	following	command	to	scan	
your	network	using	nmap:	

	 nmap 192.168.0.0/24

Whether	you’re	using	the	DHCP	service	on	your	router,	or	nmap,	you’ll	want	to	get	a	list	of	assigned	IPs	
before	turning	on	any	of	your	Pis.	After	this,	you	can	turn	on	each	Pi	–	one	at	a	time	–	and	use	nmap	or	
DHCP	to	look	for	the	new	IP	that	shows	up.	

Once	you’ve	taken	inventory	of	your	existing	IPs,	do	the	following	for	each	Pi:	

1. Insert	an	SD	card	in	the	slot	on	the	underside.	

2. Connect	a	cable	from	the	USB	charging	hub	to	the	micro-USB	port	on	the	Pi.	This	will	power	on	the	
Pi.	Wait	a	minute	or	so	for	it	to	boot.	

3. Once	you’ve	found	the	IP	address	(using	DHCP	or	nmap),	make	note	of	the	IP	address	and	which	
physical	Pi	it	corresponds	to.	

	

Hosts	file	

Now	that	we	have	IPs	for	all	of	the	Pis,	we	can	login	to	each	using	SSH	(which	we	enabled	earlier)	and	
begin	the	configuration.	You	should	now	have	a	list	of	all	of	the	IP	addresses	and	which	physical	Pi	they	
correspond	to.	Now	is	a	good	time	to	assign	names	to	each	Pi.	We	called	our	front-end	Pi	“admin”,	our	
storage	node	was	called	“nfs”,	and	the	compute	nodes	were	named	“rpi1”,	“rpi2”,	etc.	It’s	your	cluster,	so	
you	can	give	the	Pis	any	names	you	want.	Make	a	list	of	the	names	and	the	corresponding	IPs,	this	will	
become	the	hosts	file	on	each	Pi	(which	will	allow	you	to	refer	to	each	Pi	by	name	rather	than	having	to	
remember	the	IP	address).	Repeat	the	following	on	every	Pi	in	the	cluster:	

1. From	your	local	machine,	connect	to	one	of	your	Pis	using	the	following	command:	

	 ssh pi@x.x.x.x

	 (where	x.x.x.x	is	the	IP	number	of	your	Pi)	

	 The	login	is	pi	and	the	default	password	is	raspberry.	

2. Open	the	hosts	file	in	the	nano	text	editor:	

sudo nano /etc/hosts

3. To	the	bottom	of	the	file,	append	your	list	of	IPs	followed	by	the	names.	Each	entry	should	look	
something	like	this:	

...

192.168.1.200 front-end

192.168.1.201 nfs

192.168.1.202 node1

…

4. Save	the	file	when	you’re	finished	editing.	Just	hit	Ctrl+X	and	then	Y	to	save.	

5. Once	the	hosts	file	is	saved	and	you’re	back	at	the	prompt	type	‘hostname’	followed	by	the	name	of	
the	Pi	that	you’re	currently	logged	into.	For	example,	if	you	want	the	machine	you’re	logged	into	to	
be	called	‘sleepy,’	type	the	following:	

hostname sleepy

6. Next	it	would	be	a	good	idea	to	change	the	default	password.	Just	type	‘passwd’	and	follow	the	
instructions.	

	

Upgrade	the	operating	system	

All	of	your	Pis	should	now	be	online	with	new	fancy	names	and	internet	connectivity.	Login	to	each	Pi	and	
run	the	following	commands	to	upgrade	the	operating	system	on	each	Pi:	

1. sudo apt update

2. sudo apt upgrade

3. sudo reboot

	

SSH	configuration	

SSH	(or	secure	shell)	is	the	how	users	connect	to	compute	clusters	to	run	their	programs.	It’s	also	how	the	
nodes	communicate	with	each	other.	In	order	to	allow	this	communication,	we’ll	need	to	generate	public	
and	private	keys	on	the	front-end	and	distribute	the	public	keys	to	all	of	the	nodes.	Start	by	logging	in	to	
your	front-end	node	and	do	the	following:	

1. Generate	a	keypair:	

ssh-keygen -t rsa

2. You	will	be	asked	where	to	save	the	keys.	Just	hit	Enter	to	accept	the	default.	

3. You’ll	be	asked	to	enter	a	passphrase.	To	keep	things	simple,	just	hit	Enter	to	use	no	passphrase.	

4. Use	your	list	of	hostnames	and	use	the	following	command	to	copy	the	public	key	from	the	front-
end	to	each	of	the	other	nodes:	

ssh-copy-id pi@whateverthehostnameis

5. After	you’ve	run	the	above	command	to	copy	the	public	key	to	the	other	nodes,	reboot	the	front-
end	(sudo reboot)	and	make	certain	that	you	can	ssh	into	the	other	systems	without	a	password.	
Use	the	following	command	to	test	logging	into	each	node	from	the	front-end:	

ssh whatevernameyouused

	

NFS	configuration	

NFS	(network	file	system)	allows	you	to	share	files	between	your	Pi	nodes.	Without	it,	you	would	need	to	
copy	your	programs	to	each	node	before	running	them.	With	NFS,	you	can	keep	your	programs	at	a	single	
location	and	share	them	with	all	of	the	nodes.	Start	by	logging	into	your	storage	node	using	ssh:	

1. Install	NFS	server	software:	
sudo apt install nfs-kernel-server

2. Create	NFS	server	shared	directory:	
sudo mkdir /mnt/nfsserver

3. Change	the	permissions	of	the	new	folder:	
sudo chmod -R 777 /mnt/nfsserver

4. Type	‘sudo nano /etc/exports’	and	add	the	following	line	to	the	end	of	the	file:	

/mnt/nfsserver *(rw,sync)

Close	and	save	the	file.	

5. Tell	NFS	to	read	the	exports	file	you	created	above:	
sudo exportfs

6. Reboot	the	storage	node.	
7. After	reboot	log	back	into	the	storage	node	and	create	an	empty	file	in	the	shared	directory:	

sudo touch /mnt/nfsserver/blankfile

	 This	file	can	be	used	to	verify	that	files	are	being	shared.	

Next,	you’ll	need	to	login	to	the	front-end	and	each	of	the	compute	nodes	to	configure	the	NFS	client	
software	using	the	following	steps:	

1. Install	NFS	client:	
sudo apt install nfs-common

2. Create	the	mount	point	for	the	NFS	share:	
sudo mkdir -p /mnt/nfs

3. Allow	the	pi	user	to	access	the	NFS	share:	
sudo chown -R pi:pi /mnt/nfs

4. Mount	the	NFS	share.	Replace	x.x.x.x	with	the	IP	number	of	the	NFS	server:	
sudo mount x.x.x.x:/mnt/nfsserver /mnt/nfs

5. Type	‘sudo nano /etc/fstab’	and	add	the	following	line	to	the	end	of	the	file	(this	will	automount	
the	nfs	share	whenever	the	machine	boots):	

x.x.x.x:/mnt/nfsserver /mnt/nfs nfs rw 0 0

6. Close	the	file	and	save.	

7. Reboot.	Log	back	into	the	node	you	just	configured.	Run	the	following	command:	

ls /mnt/nfs/

Do	you	see	the	blank	file	in	the	listing?	If	so,	NFS	file	sharing	is	working.	Repeat	the	above	steps	on	
the	next	node…	

	

Prep	for	scheduler	and	other	parallel	software	

We’re	going	to	need	to	build	the	scheduler	from	source	code,	but	before	we	do	that	we’ll	need	to	install	
multiple	packages	to	make	this	work:	

1. Log	into	the	front-end	and	run	the	following	install:	

sudo apt install gcc make libtool libhwloc-dev libx11-dev libxt-dev libedit-dev ncurses-dev perl
postgresql-server-dev-all postgresql-contrib python-dev tcl-dev tk-dev swig libexpat-dev libssl-dev
libxext-dev libxft-dev autoconf automake git

2. Install	the	following	on	the	front-end.	Also,	install	these	on	the	compute	nodes:	

sudo apt install expat libedit2 postgresql python postgresql-contrib sendmail-bin tcl tk libical2
libglew-dev mpich2

	

Install	PBS	

Now	that	all	necessary	software	has	been	installed.	We	can	download	the	source	code	for	PBS	and	compile	
it.	Start	by	logging	into	the	front-end	node:	

1. Go	the	shared	NFS	directory:	
cd /mnt/nfs

2. Download	the	PBS	source	code:	
git clone https://github.com/PBSPro/pbspro.git

3. Change	to	m4	directory.	We’ll	need	to	make	some	changes…	
cd pbspro/m4

4. Run	the	following	command.	This	will	allow	you	to	compile	PBS	on	the	ARM	processor	(instead	of	
x86):	

sed -i 's/x86_64-linux-gnu/arm-linux-gnueabihf/g' *.m4

5. Run	the	following	commands	to	compile	PBS	(this	could	take	a	half	hour	or	more):	

cd /mnt/nfs/pbspro

./autogen.sh

./configure –prefix=/opt/pbs

make

sudo make install

6. Run	the	following	script	to	complete	the	install	on	the	front-end	node:	

sudo /opt/pbs/libexec/pbs_postinstall

7. Type	‘sudo nano /etc/pbs.conf’.	Modify	the	file	so	it	looks	like	this:	

PBS_SERVER=admin (change ‘admin’ to the name of your front-end node!)

PBS_START_SERVER=1

PBS_START_SCHED=1

PBS_START_COMM=1

PBS_START_MOM=0

PBS_EXEC=/opt/pbs

PBS_HOME=/var/spool/pbs

PBS_CORE_LIMIT=unlimited

PBS_SCP=/usr/bin/scp

8. Set	file	permissions	and	start	PBS:	

sudo chmod 4755 /opt/pbs/sbin/pbs_iff /opt/pbs/sbin/pbs_rcp

sudo /etc/init.d/pbs_start

Now	login	to	each	of	the	compute	nodes	and	do	the	following:	

1. cd /mnt/nfs/pbspro

2. sudo make install

3. Run	the	following	script	to	complete	the	install	on	this	compute	node:	

sudo /opt/pbs/libexec/pbs_postinstall

4. Type	‘sudo nano /etc/pbs.conf’.	Modify	the	file	so	it	looks	like	this:	

PBS_SERVER=admin (change ‘admin’ to the name of your front-end node!)

PBS_START_SERVER=0

PBS_START_SCHED=0

PBS_START_COMM=0

PBS_START_MOM=1

PBS_EXEC=/opt/pbs

PBS_HOME=/var/spool/pbs

PBS_CORE_LIMIT=unlimited

PBS_SCP=/usr/bin/scp

5. Set	file	permissions	and	start	PBS:	

sudo chmod 4755 /opt/pbs/sbin/pbs_iff /opt/pbs/sbin/pbs_rcp

sudo /etc/init.d/pbs_start

	

Once	PBS	is	running	on	the	front-end	and	all	compute	nodes,	log	back	into	the	front-end:	

1. Create	a	default	queue	and	set	scheduler	defaults:	

sudo /opt/pbs/bin/qmgr -c “create queue dev queue_type=e,started=t,enabled=t”

sudo /opt/pbs/bin/qmgr -c “set server default_queue=dev”

sudo /opt/pbs/bin/qmgr -c "set server job_history_enable=true"

sudo /opt/pbs/bin/qmgr -c "set server flatuid=true"

2. Register	each	compute	node	on	the	front-end:	

sudo /opt/pbs/bin/qmgr -c “create node X” (replace	“X”	with	the	name	of	the	compute	node)	
	

3. Check	whether	all	of	the	nodes	are	listed:	
pbsnodes -a

	
	
Running	a	test	MPI	program	using	PBS	
	
We’ll	run	a	hello world	program	on	multiple	processors	to	make	certain	that	our	PBS	cluster	is	working	
properly.	Log	into	the	front-end	node:	
	

1. Change	to	shared	NFS	directory:	
cd /mnt/nfs

2. Create	a	directory	for	your	new	program,	and	change	to	that	directory:	
mkdir helloworld
cd helloworld

3. Run	‘nano helloworld.c’	and	enter	the	following	code:	

#include <mpi.h>
#include <stdio.h>
int main(int argc, char** argv) {

// initialize MPI environment
MPI_Init(NULL,NULL);

//get # of processes
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

//get rank of the process
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

//get name of processor
char processor_name[MPI_MAX_PROCESSOR_NAME];
int name_len;
MPI_Get_processor_name(processor_name, &name_len);

//print a hello world message
printf(“Hello world from processor %s, rank %d out of %d processors\n”,

processor_name, world_rank, world_size);
//Finalize MPI environment
MPI_Finalize();

}

4. Exit	the	file	and	save.	
5. Compile	the	code	

mpicc -o helloworld helloworld.c

6. Now	that	we	have	an	executable	that	we	can	run	on	multiple	nodes,	let’s	write	a	script	that	will	
distribute	the	program	using	PBS.	Run	‘sudo nano run_hello’	and	enter	the	following:	

#PBS -lselect=6:ncpus=4
mpiexec /mnt/nfs/helloworld/helloworld

7. Exit	the	file	and	save.	
8. Run	the	script	using	PBS:	

qsub run_hello

9. Take	note	of	the	job	ID.	A	couple	of	files	will	be	created	in	the	same	folder	as	the	script	called	
run_hello.e[job_id]	and	run_hello.o[job_id].	The	file	with	the	extension	starting	with	“e”	is	an	error	
file	(hopefully,	this	is	empty).	The	file	with	the	extension	starting	with	“o”	is	the	output	file.	
Viewing	this	file	should	give	you	the	output	of	the	above	program.	

	
	
TinySPH	Visual	Demo	
	
For	this	last	demonstration,	we	actually	won’t	use	PBS,	since	this	is	an	interactive	process.	As	always,	start	
by	logging	into	the	front-end	node:	

1. Change	to	the	shared	NFS	directory	
cd /mnt/nfs

2. Pull	the	source	code	from	github:	
git clone https://github.com/TinyTitan/SPH

3. Enter	the	SPH	folder:	
cd SPH

4. Edit	the	makefile	(‘nano makefile’).	Change	the	3rd	line	to	this:	
LDFLAGS+=-L$(SDKSTAGE)/opt/vc/lib/ -lbrcmGLESv2 -lGLEW -lbrcmEGL -lopenmaxil -lbcm_host -
lvcos -lvchiq_arm -lpthread -lrt -L../libs/ilclient -L../libs/vgfont -lfreetype

5. Exit	the	file	and	save.	
6. Run	the	make	script:	

make

7. If	all	goes	well,	copy	sph.out	to	the	/mnt/nfs	directory:	
cp sph.out ..

8. Go	back	to	the	/mnt/nfs directory:	
cd ..

9. Create	a	machine	file	(‘nano machinefile’)	add	the	IPs	for	the	admin	nodes	and	the	compute	nodes.	
There	should	be	an	IP	address	on	each	line.	

10. Exit	the	file	and	save.	
11. Run	the	program:	

mpiexec -f machinefile -n 7 /mnt/nfs/sph.out
	
If	all	went	well,	you	should	see	something	like	this:	
	

	
	

• Ctrl+C	exits	the	program.	
• The	L	key	will	switch	between	water	and	particle	mode.	
• Arrow	keys	can	be	used	to	modify	the	values	in	the	upper-left-hand	corner.	

